Search results

Search for "dielectric materials" in Full Text gives 21 result(s) in Beilstein Journal of Nanotechnology.

Investigations on the optical forces from three mainstream optical resonances in all-dielectric nanostructure arrays

  • Guangdong Wang and
  • Zhanghua Han

Beilstein J. Nanotechnol. 2023, 14, 674–682, doi:10.3762/bjnano.14.53

Graphical Abstract
  • radiation field significantly decreases or even vanishes in the scattering spectrum at a specific wavelength. In dielectric materials, the anapole mode is mainly confined to the interior of the structure and does not strongly extend into the surrounding medium [10]. The BIC is a wave excitation which
PDF
Album
Full Research Paper
Published 02 Jun 2023

ZnO-decorated SiC@C hybrids with strong electromagnetic absorption

  • Liqun Duan,
  • Zhiqian Yang,
  • Yilu Xia,
  • Xiaoqing Dai,
  • Jian’an Wu and
  • Minqian Sun

Beilstein J. Nanotechnol. 2023, 14, 565–573, doi:10.3762/bjnano.14.47

Graphical Abstract
  • materials due to their high content of surface functional groups. Among dielectric materials, zinc oxide possesses the outstanding characteristics of low cost, non-toxicity, excellent thermodynamic stability and photostability, and unique semiconducting properties. Hence, it is widely used in the fields of
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2023

Electrical, electrochemical and structural studies of a chlorine-derived ionic liquid-based polymer gel electrolyte

  • Ashish Gupta,
  • Amrita Jain,
  • Manju Kumari and
  • Santosh K. Tripathi

Beilstein J. Nanotechnol. 2021, 12, 1252–1261, doi:10.3762/bjnano.12.92

Graphical Abstract
  • dielectric constant with increasing frequency is the most expected phenomenon of dielectric materials which mostly arises due to the dielectric relaxation that causes an anomalous dispersion. The orientational polarization, which depends on the molecular arrangement of dielectric materials, is the major
  • frequencies [10]. From Figure 6b it can be seen that the larger values of the dielectric loss (εi) are more prominent in lower frequencies as well as in higher temperature regions. Mostly it arises due to the mobility of free charge carriers that exist within the dielectric materials. The general pattern
PDF
Album
Full Research Paper
Published 18 Nov 2021

Simulation of gas sensing with a triboelectric nanogenerator

  • Kaiqin Zhao,
  • Hua Gan,
  • Huan Li,
  • Ziyu Liu and
  • Zhiyuan Zhu

Beilstein J. Nanotechnol. 2021, 12, 507–516, doi:10.3762/bjnano.12.41

Graphical Abstract
  • the two dielectric materials varies, the field intensity caused by the charge also varies. The corresponding electric potential decreases with decreasing distance and increases with increasing distance. Figure 3b is the electric potential distribution diagram when the distance is 0.1 mm. In the
  • simulation, we measured the potential difference between the outer surfaces of the two dielectric materials as ds is gradually increased from 0.1 to 1 mm, as shown in Figure 3c, which also reflects the influence of the distance between the two triboelectric materials on the potential. In practice, it is
PDF
Album
Full Research Paper
Published 28 May 2021

Structural and optical characteristics determined by the sputtering deposition conditions of oxide thin films

  • Petronela Prepelita,
  • Florin Garoi and
  • Valentin Craciun

Beilstein J. Nanotechnol. 2021, 12, 354–365, doi:10.3762/bjnano.12.29

Graphical Abstract
  • -frequency magnetron sputtering (rfMS) [27][28][29][30], vacuum thermal evaporation (VTE) [31][32][33], chemical methods [34], reactive ion beam sputter deposition [35], among others. For example, SiO2 and ZnO films obtained by rfMS can be either used as dielectric materials in metasurface structures or as
  • (αhν)2 = f(hν) to (αhν)2 → 0. The edge of the absorption band shifts to longer wavelengths with an increase in thickness of the thin films (Figure 10). In such dielectric materials the electrons are characterized by a high-energy bandgap [55]. The bandgap value was determined for all sets of samples
  • that at a wavelength of 430 nm the refractive index of the films approaches a minimum value. The quality of the dielectric materials is also determined by the dielectric constant values. The values of the dielectric constant were obtained by using the Drude method [58][59] and the spectral absorption
PDF
Album
Full Research Paper
Published 19 Apr 2021

Paper-based triboelectric nanogenerators and their applications: a review

  • Jing Han,
  • Nuo Xu,
  • Yuchen Liang,
  • Mei Ding,
  • Junyi Zhai,
  • Qijun Sun and
  • Zhong Lin Wang

Beilstein J. Nanotechnol. 2021, 12, 151–171, doi:10.3762/bjnano.12.12

Graphical Abstract
  • ground and taken as the reference electrode. The direction of the induced electric field can be reversely changed during the approximation or separation between the bottom electrode and the upper dielectric materials. The charge exchange will occur between the bottom electrode and ground to balance the
PDF
Album
Review
Published 01 Feb 2021

High permittivity, breakdown strength, and energy storage density of polythiophene-encapsulated BaTiO3 nanoparticles

  • Adnanullah Khan,
  • Amir Habib and
  • Adeel Afzal

Beilstein J. Nanotechnol. 2020, 11, 1190–1197, doi:10.3762/bjnano.11.103

Graphical Abstract
  • Department of Chemistry, College of Science, University of Hafr Al Batin, PO Box 1803, Hafr Al Batin, 39524, Saudi Arabia 10.3762/bjnano.11.103 Abstract High permittivity and breakdown strength are desired to improve the energy storage density of dielectric materials based on reinforced polymer composites
  • increase in the energy storage density of the BTO-PTh nanoparticles is attributed to simultaneously high permittivity and breakdown strength, which are excellent for potential energy storage applications. Keywords: barium titanate (BaTiO3) nanoparticles; breakdown strength; dielectric materials; energy
  • storage; polythiophene; Introduction The fast-paced progress and constantly growing demand of microelectronic devices and energy storage technologies have led to extensive research on the development of new dielectric materials [1][2][3]. High-κ ceramic-based dielectric materials such as BaTiO3 (BTO
PDF
Album
Full Research Paper
Published 10 Aug 2020

Electrostatic force microscopy for the accurate characterization of interphases in nanocomposites

  • Diana El Khoury,
  • Richard Arinero,
  • Jean-Charles Laurentie,
  • Mikhaël Bechelany,
  • Michel Ramonda and
  • Jérôme Castellon

Beilstein J. Nanotechnol. 2018, 9, 2999–3012, doi:10.3762/bjnano.9.279

Graphical Abstract
  • dielectric materials, each with a specific dielectric permittivity, were assembled in the form of sub-micrometer particles covered by two thin shells that represent the interphase and the matrix in the “real” systems. The study of the signals above the central region of the particles at constant tip–sample
PDF
Album
Full Research Paper
Published 07 Dec 2018

Metal–dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode

  • Valerio F. Gili,
  • Lavinia Ghirardini,
  • Davide Rocco,
  • Giuseppe Marino,
  • Ivan Favero,
  • Iännis Roland,
  • Giovanni Pellegrini,
  • Lamberto Duò,
  • Marco Finazzi,
  • Luca Carletti,
  • Andrea Locatelli,
  • Aristide Lemaître,
  • Dragomir Neshev,
  • Costantino De Angelis,
  • Giuseppe Leo and
  • Michele Celebrano

Beilstein J. Nanotechnol. 2018, 9, 2306–2314, doi:10.3762/bjnano.9.215

Graphical Abstract
  • dielectric materials the electric field penetrates deeply into the volume [16], the exploitation of large bulk nonlinearities also enables enhanced nonlinear light–matter interactions at the nanoscale. Third-harmonic generation (THG) was the first nonlinear effect observed in nanoscale semiconductors with
PDF
Album
Full Research Paper
Published 27 Aug 2018

Nanoscale mapping of dielectric properties based on surface adhesion force measurements

  • Ying Wang,
  • Yue Shen,
  • Xingya Wang,
  • Zhiwei Shen,
  • Bin Li,
  • Jun Hu and
  • Yi Zhang

Beilstein J. Nanotechnol. 2018, 9, 900–906, doi:10.3762/bjnano.9.84

Graphical Abstract
  • properties under ambient conditions. In addition, adhesion force mapping with a biased AFM tip can be used to distinguish between different dielectric materials at the nanoscale. In order to prove this, a mixed sample of GO and CRGO sheets was studied as a model system (Figure 3). CRGO is a product of GO
PDF
Album
Supp Info
Full Research Paper
Published 16 Mar 2018

The effect of atmospheric doping on pressure-dependent Raman scattering in supported graphene

  • Egor A. Kolesov,
  • Mikhail S. Tivanov,
  • Olga V. Korolik,
  • Olesya O. Kapitanova,
  • Xiao Fu,
  • Hak Dong Cho,
  • Tae Won Kang and
  • Gennady N Panin

Beilstein J. Nanotechnol. 2018, 9, 704–710, doi:10.3762/bjnano.9.65

Graphical Abstract
  • graphene transferred to Cu and Al2O3 as typical conducting and dielectric materials, a stronger carrier density change was obtained for the latter. As the pressure decreases, removal of adsorbates from the surface of graphene on Al2O3 results in the Raman spectra parameters becoming close to those typical
PDF
Album
Full Research Paper
Published 22 Feb 2018

Parylene C as a versatile dielectric material for organic field-effect transistors

  • Tomasz Marszalek,
  • Maciej Gazicki-Lipman and
  • Jacek Ulanski

Beilstein J. Nanotechnol. 2017, 8, 1532–1545, doi:10.3762/bjnano.8.155

Graphical Abstract
  • insulating material. The capacitance is determined by the dielectric permittivity (ε) and the thickness of the insulating layer. Currently, two types of dielectric materials are commonly employed in transistor design and construction, either inorganic metal oxides (such as Ta2O5, Al2O3, SiO2) or organic
  • the linear regime. To summarize, it should be pointed out that an increase of dielectric permittivity of gate insulating material results in a decrease of field effect mobility (Figure 7b). For all dielectric materials applied, the highest values of charge carrier mobility were obtained for xylylene
  • energy exhibited a mobility of μ = 0.006 cm2/V·s. More detailed studies were carried out for tetracene semiconductor films deposited on various dielectric materials, namely organic polystyrene (PS), Parylene C, and poly(methyl methacrylate) (PMMA) as well as on inorganic SiO2, with and without HMDS
PDF
Album
Review
Published 28 Jul 2017

Advances in the fabrication of graphene transistors on flexible substrates

  • Gabriele Fisichella,
  • Stella Lo Verso,
  • Silvestra Di Marco,
  • Vincenzo Vinciguerra,
  • Emanuela Schilirò,
  • Salvatore Di Franco,
  • Raffaella Lo Nigro,
  • Fabrizio Roccaforte,
  • Amaia Zurutuza,
  • Alba Centeno,
  • Sebastiano Ravesi and
  • Filippo Giannazzo

Beilstein J. Nanotechnol. 2017, 8, 467–474, doi:10.3762/bjnano.8.50

Graphical Abstract
  • ) morphologies of low temperature (left) and standard temperature (right) dielectric materials deposited on a Si wafer; b) AFM local step height of the lift-off patterned low temperature dielectric; c) comparison between tAFM morphologies of low temperature (left) and standard temperature (right) dielectric
  • material deposited on an Al coated Si wafer; and d) current density leakage through low temperature and standard temperature dielectric materials. a) Tapping mode atomic force microscopy (tAFM) morphology of the PEN surface and b) a schematic representation of the PEN starting substrate. c) tAFM morphology
PDF
Album
Full Research Paper
Published 20 Feb 2017

Linear and nonlinear optical properties of hybrid metallic–dielectric plasmonic nanoantennas

  • Mario Hentschel,
  • Bernd Metzger,
  • Bastian Knabe,
  • Karsten Buse and
  • Harald Giessen

Beilstein J. Nanotechnol. 2016, 7, 111–120, doi:10.3762/bjnano.7.13

Graphical Abstract
  • nonlinearity of the metallic part of the hybrid antennas. Thus, the nonlinear signals generated by the antenna itself are dominant in our experiments. We demonstrate that the well-known nonlinear response of bulk dielectric materials cannot always straightforwardly be used to boost the nonlinear response of
PDF
Album
Full Research Paper
Published 26 Jan 2016

Scanning reflection ion microscopy in a helium ion microscope

  • Yuri V. Petrov and
  • Oleg F. Vyvenko

Beilstein J. Nanotechnol. 2015, 6, 1125–1137, doi:10.3762/bjnano.6.114

Graphical Abstract
  • incidence from 0° to 10° results in the relative variation of the shadow width of a few percent and does not affect the accuracy of the measurements. In summary, reflection ion microscopy is useful for imaging of the surface of dielectric materials without the need for charge compensation, and the
PDF
Album
Full Research Paper
Published 07 May 2015

Frequency, amplitude, and phase measurements in contact resonance atomic force microscopies

  • Gheorghe Stan and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2014, 5, 278–288, doi:10.3762/bjnano.5.30

Graphical Abstract
  • reference contact resonance state with respect to which moderate phase variations are experienced during contact measurements or scanning. This type of measurement has been performed also in the UAFM configuration of CR-AFM on Cu-low-k dielectric materials, with the PLL locked on the phase of a contact
PDF
Album
Full Research Paper
Published 12 Mar 2014

Challenges in realizing ultraflat materials surfaces

  • Takashi Yatsui,
  • Wataru Nomura,
  • Fabrice Stehlin,
  • Olivier Soppera,
  • Makoto Naruse and
  • Motoichi Ohtsu

Beilstein J. Nanotechnol. 2013, 4, 875–885, doi:10.3762/bjnano.4.99

Graphical Abstract
  • -based technique can be applied to other materials including semiconductors, dielectric materials, insulators, and plastics. DPP etching is a noncontact method and therefore does not cause damage owing to mechanical polishing, and hence, this technique should help to improve the electrical, optical, and
PDF
Album
Review
Published 11 Dec 2013

Diamond nanophotonics

  • Katja Beha,
  • Helmut Fedder,
  • Marco Wolfer,
  • Merle C. Becker,
  • Petr Siyushev,
  • Mohammad Jamali,
  • Anton Batalov,
  • Christopher Hinz,
  • Jakob Hees,
  • Lutz Kirste,
  • Harald Obloh,
  • Etienne Gheeraert,
  • Boris Naydenov,
  • Ingmar Jakobi,
  • Florian Dolde,
  • Sébastien Pezzagna,
  • Daniel Twittchen,
  • Matthew Markham,
  • Daniel Dregely,
  • Harald Giessen,
  • Jan Meijer,
  • Fedor Jelezko,
  • Christoph E. Nebel,
  • Rudolf Bratschitsch,
  • Alfred Leitenstorfer and
  • Jörg Wrachtrup

Beilstein J. Nanotechnol. 2012, 3, 895–908, doi:10.3762/bjnano.3.100

Graphical Abstract
  • dip at zero time delay amounts to 0.21. A value below 0.5 would explicitly indicate that a single NV center coupled to the cavity is a single photon source. There are two main factors that may currently limit the depth of the antibunching dip. First, background photoluminescence from the dielectric
  • materials, especially from SiO2 layers, and second, background emission from the diamond nanocrystal itself. By optimization of the sputter parameters, we recently achieved a reduction in photoluminescence of sputtered SiO2 layers by a factor of nine at a wavelength of 637 nm (ZPL of NV− centers, Figure 9b
PDF
Album
Video
Full Research Paper
Published 21 Dec 2012

Assessing the plasmonics of gold nano-triangles with higher order laser modes

  • Laura E. Hennemann,
  • Andreas Kolloch,
  • Andreas Kern,
  • Josip Mihaljevic,
  • Johannes Boneberg,
  • Paul Leiderer,
  • Alfred J. Meixner and
  • Dai Zhang

Beilstein J. Nanotechnol. 2012, 3, 674–683, doi:10.3762/bjnano.3.77

Graphical Abstract
  • dielectric materials such as the glass and silicon is inevitably missing. 2) The foci at the air/silicon and air/glass interfaces are different due to the different material properties. 3) This simple convolution approach accurately describes the scattering at single nanostructures but completely neglects
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2012

Distinction of nucleobases – a tip-enhanced Raman approach

  • Regina Treffer,
  • Xiumei Lin,
  • Elena Bailo,
  • Tanja Deckert-Gaudig and
  • Volker Deckert

Beilstein J. Nanotechnol. 2011, 2, 628–637, doi:10.3762/bjnano.2.66

Graphical Abstract
  • -dimensional finite-difference time domain (3D-FDTD) simulations [20]. A metal substrate such as gold provides an additional field enhancement as it produces a large electromagnetic (EM) coupling with the tip, which is often called a “gap mode”. In contrast, dielectric materials cannot couple as effectively
PDF
Album
Full Research Paper
Published 23 Sep 2011

Preparation and characterization of supported magnetic nanoparticles prepared by reverse micelles

  • Ulf Wiedwald,
  • Luyang Han,
  • Johannes Biskupek,
  • Ute Kaiser and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2010, 1, 24–47, doi:10.3762/bjnano.1.5

Graphical Abstract
  • is necessary and the substrates must be able to withstand this etching procedure. In this context, among dielectric materials especially, oxides such as MgO, sapphire, SrTiO3, quartz were found to be suitable, as well as materials forming thin oxide layers such as Si. Furthermore, adhesion of the NPs
PDF
Album
Video
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities